Skip to main content
Log in

Analysis of l-tyrosine based on electrocatalytic oxidative reactions via screen-printed electrodes modified with multi-walled carbon nanotubes and nanosized titanium oxide (TiO2)

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Method for electrochemical determination of l-tyrosine with screen-printed electrodes (SPE) modified with multi-walled CNT or CNT/TiO2 as sensing elements was used for the electroanalysis of l-tyrosine (Tyr). It was demonstrated that SPE/CNT and SPE/CNT/TiO2 exhibited high electrocatalytic activity and good analytical performance towards oxidation of l-tyrosine. The linear range of Tyr in human serum was 0.025 ÷ 1 mM with the correlation coefficient R2 = 0.97. Direct electrochemistry (without any mediator) of co-factor-free bovine serum albumin (BSA) and human serum albumin (HSA) was investigated by use of modified electrodes. Protein–ligand interactions based on the electrocatalytic oxidation of l-tyrosine during HSA interaction with hemin were analyzed by the change of peak height and oxidation peak area, corresponding to tyrosine oxidation accessibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • An Z, Chen Y, Song Y, Sun J, He J, Bai J, Dong L, Zhan Q, Abliz Z (2010) Integrated ionization approach for RRLC-MS/MS-based metabonomics: finding potential biomarkers for lung cancer. J Proteome Res 9:4071–4081

    Article  PubMed  CAS  Google Scholar 

  • Beitollahi H, Mohadesi A, Ghorbani F, Malen HK, Baghayeri M, Hosseinzaden R (2013) Electrocatalytic measurement of methionine concentration with a carbon nanotube paste electrode modified with benzoylferrocene. Chin J Catal 34:1333–1338

    Article  CAS  Google Scholar 

  • Brabec V, Mornstein V (1980a) Electrochemical behaviour of proteins at graphite electrodes. I. Electrooxidation of proteins as a new probe of protein structure and reactions. Biochim Biophys Acta 625:43–50

    Article  PubMed  CAS  Google Scholar 

  • Brabec V, Mornstein V (1980b) Electrochemical behaviour of proteins at graphite electrodes. II. Electrooxidation of amino acids. Biophys Chem 12(2):159–165

    Article  PubMed  CAS  Google Scholar 

  • Carrara S, Cavallini A, Erokhin V, De Micheli G (2011) Multi-panel drugs detection in human serum for personalized therapy. Biosens Bioelectron 26:3914–3919

    Article  PubMed  CAS  Google Scholar 

  • Carrara S, Baj-Rossi C, Boero C, De Micheli G (2014) Do carbon nanotubes contribute to electrochemical biosensing? Electrochim Acta 128:102–112

    Article  CAS  Google Scholar 

  • Chiku M, Ivandini TA, Kamiya F, Fujishima A, Einaga Y (2008) Direct electrochemical oxidation of proteins at conductive diamond electrodes. J Electroanal Chem 612:201–207

    Article  CAS  Google Scholar 

  • Elsadek B, Kratz F (2012) Impact of albumin on drug delivery—new applications on the horizon. J Controll Release 157:4–28

    Article  CAS  Google Scholar 

  • Fanali G, di Masi A, Trezza V, Marino M, Fasano M, Ascenzi P (2012) Human serum albumin: from bench to bedside. Mol Asp Med 33:209–290

    Article  CAS  Google Scholar 

  • Gundry RL, Fu Q, Jelinek CA, Van Eyk JE, Cotter RJ (2007) Investigation of an albumin-enriched fraction of human serum and its albuminome. Proteom Clin Appl 1(1):73–88

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Radhapyari K, Jadon N, Agarwal S (2011) Voltammetric techniques for the assay of pharmaceuticals—a review. Anal Biochem 408:179–196

    Article  PubMed  CAS  Google Scholar 

  • Hasanzadeh M, Karim-Nezhad G, Shadjou N, Hajjizadeh M, Khalilzadeh B, Saghatforoush L, Abnosi MH, Babaei A, Ershad S (2009) Cobalt hydroxide nanoparticles modified glassy carbon electrode as a biosensor for electrooxidation and determination of some amino acids. Anal Biochem 389:130–137

    Article  PubMed  CAS  Google Scholar 

  • Hosseini H, Mahyari M, Bagheri A, Shaabani A (2014) A novel bioelectrochemical sensing platform based on covalently attachment of cobalt phthalocyanine to graphene oxide. Biosens Bioelectron 52:136–142

    Article  PubMed  CAS  Google Scholar 

  • Huang KJ, Luo DF, Xie WZ, Yu YS (2008) Sensitive voltammetric determination of tyrosine using multi-walled carbon nanotubes/4-aminobenzeresulfonic acid film-coated glassy carbon electrode. Colloids Surf B Biointerfaces 61:176–181

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Luo Q, Feng J (2001) Direct electron transfer for heme proteins assembled on nanocrystalline TiO2 film. Electroanalysis 13:359–363

    Article  CAS  Google Scholar 

  • Malfoy B, Reynaud JA (1980) Electrochemical investigations of amino acids at solid electrodes: part II. Amino acids containing no sulfur atoms: tryptophan, tyrosine, histidine and derivatives. J Electroanal Chem Interfacial Electrochem 114:213–223

    Article  CAS  Google Scholar 

  • Moein MM, El-Beqqali A, Abdel-Rehim A, Jeppsson-Dadoun A, Abdel-Rehim M (2014) Preparation of monolithic molecularly imprinted polymer sol-gel packed tips for high-throughput bioanalysis: extraction and quantification of l-tyrosine in human plasma and urine samples utilizing liquid chromatography and tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 967:168–173

    Article  PubMed  CAS  Google Scholar 

  • Reinders J, Sickmann A (2007) Modificomics: posttranslational modifications beyond protein phosphorylation and glycosylation. Biomol Eng 24:169–177

    Article  PubMed  CAS  Google Scholar 

  • Reynaud JA, Malfoy B, Bere A (1980a) The electrochemical oxidation of three proteins: RNAase A, bovine serum albumin and concanavalin A at solid electrodes. J Electroanal Chem Interfacial Electrochem 116:595–606

    Article  Google Scholar 

  • Reynaud JA, Malfoy B, Canesson P (1980b) Electrochemical investigations of amino acids at solid electrodes: part I. Sulfur components: cystine, cysteine, methionine. J Electroanal Chem Interfacial Electrochem 114:195–211

    Article  CAS  Google Scholar 

  • Saghatforoush L, Hasanzadeh M, Shadjou N, Khalilzadeh B (2011) Deposition of new thia-containing Schiff-base iron(III) complexes onto carbon nanotube-modified glassy carbon electrodes as a biosensor for electrooxidation and determination of amino acids. Electrochim Acta 56:1051–1061

    Article  CAS  Google Scholar 

  • Sandoval AP, Orts JM, Rodes A, Feliu JM (2013) A comparative study of the adsorption and oxidation of l-alanine and l-serine on Au (1 0 0), Au (1 1 1) and gold thin film electrodes in acid media. Electrochim Acta 89:72–83

    Article  CAS  Google Scholar 

  • Sharifi E, Salimi A, Shams E (2012) DNA/nickel oxide nanoparticles/osmium(III)-complex modified electrode toward selective oxidation of l-cysteine and simultaneous detection of l-cysteine and homocysteine. Bioelectrochemistry 86:9–21

    Article  PubMed  CAS  Google Scholar 

  • Shumyantseva V, Bulko T, Zimin A, Uvarov V, Archakov A (1996) Design of an artificial hemoprotein based on human serum albumin. Biochem Mol Biol Int 39:503–510

    PubMed  CAS  Google Scholar 

  • Shumyantseva VV, Bulko TV, Suprun EV, Chalenko YM, Vagin MYu, Rudakov YuO, Shatskaya MA, Archakov AI (2011) Electrochemical investigations of cytochrome P450. Biochim Biophys Acta 1814:94–101

    Article  PubMed  CAS  Google Scholar 

  • Shumyantseva VV, Suprun EV, Bulko TV, Chalenko YM, Archakov AI (2012) Nanomedicine in diagnostics, part 4. Electrochemical sensor systems for medicine, 1st edn. CRC Press, New York, pp 68–95

    Book  Google Scholar 

  • Shumyantseva VV, Suprun EV, Bulko TV, Archakov AI (2014a) Electrochemical methods for detection of post-translational modifications of proteins. Biosens Bioelectron 61:131–139

    Article  PubMed  CAS  Google Scholar 

  • Shumyantseva VV, Bulko TV, Kuzikov AV, Khan R, Archakov AI (2014b) Development of methods for functionalization of screen printed electrodes with biocompatible organic–inorganic hybrid nanocomposites for biosensing applications. Biochem (Moscow) Suppl Ser B Biomed Chem 8:237–242

    Article  Google Scholar 

  • Suprun EV, Zharkova MS, Morozevich GE, Veselovsky AV, Shumyantseva VV, Archakov AI (2013) Analysis of redox activity of proteins on the carbon screen printed electrodes. Electroanalysis 25:2109–2116

    Article  CAS  Google Scholar 

  • Suprun EV, Zaryanov NV, Radko SP, Kulikova AA, Kozin SA, Makarov AA, Archakov AI, Shumyantseva VV (2015) Tyrosine based electrochemical analysis of amyloid-β fragment (1–16) binding to metal(II) ions. Electrochim Acta 179:93–99

    Article  CAS  Google Scholar 

  • Suprun EV, Khmeleva SA, Radko SP, Archakov AI, Shumyantseva VV (2016a) Electrochemical analysis of amyloid-β domain 1–16 isoforms and their complexes with Zn(II) ions. Electrochim Acta 187:677–683

    Article  CAS  Google Scholar 

  • Suprun EV, Khmeleva SA, Radko SP, Kozin SA, Archakov AI, Shumyantseva VV (2016b) Direct electrochemical oxidation of amyloid-β peptides via tyrosine, histidine, and methionine residues. Electrochem Commun 65:53–56

    Article  CAS  Google Scholar 

  • Swetha P, Kumar AS (2013) Phosphomolybdic acid nano-aggregates immobilized nafion membrane modified electrode for selective cysteine electrocatalytic oxidation and anti-dermatophytic activity. Electrochim Acta 98:54–65

    Article  CAS  Google Scholar 

  • Wei M-Y, Famouri P, Guo L-H (2012) Electrocatalytic oxidation of tyrosines shows signal enhancement in label-free protein biosensors. Trends Anal Chem 39:130–148

    Article  CAS  Google Scholar 

  • Xiao Y, Li C (2008) Nanocomposites: from fabrications to electrochemical bioapplications. Electroanalysis 20:648–662

    Article  CAS  Google Scholar 

  • Xie L-X, Wu H-L, Fang Y, Kang C, Xiang S-X, Zhu L, Yin X-L, Gu H-W, Liu Z, Yu R-Q (2015) Simultaneous determination of tyrosine and levodopa in human plasma using enzyme-induced excitation-emission-kinetic third-order calibration method. Chemometr Intell Lab Syst 148:9–19

    Article  CAS  Google Scholar 

  • Yu X, Mai Z, Xiao Y, Zou X (2008) Electrochemical behavior and determination of l-tyrosine at single-walled carbon nanotubes modified glassy carbon electrode. Electroanalysis 20:1246–1251

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This investigation was performed within the framework of the Program for Basic Research of Russian State Academy of Sciences for 2013–2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Shumyantseva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in this work.

Research involving human participants and/or animals

No human participants and/or animals were involved in this research.

Informed consent

No informed consent is required for this research.

Additional information

Handling Editor: H. S. Sharma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 816 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shumyantseva, V., Bulko, T., Kuzikov, A. et al. Analysis of l-tyrosine based on electrocatalytic oxidative reactions via screen-printed electrodes modified with multi-walled carbon nanotubes and nanosized titanium oxide (TiO2). Amino Acids 50, 823–829 (2018). https://doi.org/10.1007/s00726-018-2557-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-018-2557-z

Keywords

Navigation